1,3-Propanedial
public_id
FDB008116
IUPAC 名称
propanedial
描述
It is used as an indicator of fatty acid and lipid peroxidation, and oxidative changes in foods MDA and other "thiobarbituric reactive substances" (TBARS) condense with two equivalents of thiobarbituric acid to give a fluorescent red derivative that can be assayed spectrophotometrically. 1-Methyl-2-phenylindole is an alternative more selective reagent.; Malondialdehyde (MDA) is the dialdehyde of malonic acid and a biomarker of oxidative damage to lipids caused by smoking.; Oxidized lipids are able to produce MDA as a decomposition product. The mechanism is thought to involve formation of prostaglandin-like endoperoxides from polyunsaturated fatty acids with two or more double bonds. An alternative mechanism is based on successive hydroperoxide formation and β-cleavage of polyunsaturated fatty acids. MDA is then directly formed by β-scission of a 3-hydroperoxyaldehyde or by reaction between acrolein and hydroxyl radicals. While oxidation of polyunsaturated fatty acids is the major source of MDA in vivo, other minor sources exists such as byproducts of free radical generation by ionizing radiation and of the biosynthesis of prostaglandins. Aldehydes are generally reactive species capable of forming adducts and complexes in biological systems and MDA is no exception although the main species at physiological pH is the enolate ion which is of relative low reactivity. Consistent evidence is available for the reaction between MDA and cellular macromolecules such as proteins, RNA and DNA. MDA reacts with DNA to form adducts to deoxyguanosine and deoxyadenosine which may be mutagenic and these can be quantified in several human tissues. Oxidative stress is an imbalance between oxidants and antioxidants on a cellular or individual level. Oxidative damage is one result of such an imbalance and includes oxidative modification of cellular macromolecules, induction of cell death by apoptosis or necrosis, as well as structural tissue damage. Chemically speaking, oxidants are compounds capable of oxidizing target molecules. This can take place in three ways: abstraction of hydrogen, abstraction of electrons or addition of oxygen. All cells living under aerobic conditions are continuously exposed to a large numbers of oxidants derived from various endogenous and exogenous sources. The endogenous sources of oxidants are several and include the respiratory chain in the mitochondria, immune reactions, enzymes such as xanthine oxidase and nitric oxide synthase and transition metal mediated oxidation. Various exogenous sources of ROS also contribute directly or indirectly to the total oxidant load. These include effects of ionizing and non-ionizing radiation, air pollution and natural toxic gases such as ozone, and chemicals and toxins including oxidizing disinfectants. A poor diet containing inadequate amounts of nutrients may also indirectly result in oxidative stress by impairing cellular defense mechanisms. The cellular macromolecules, in particular lipids, proteins and DNA, are natural targets of oxidation. Oxidants are capable of initiating lipid oxidation by abstraction of an allylic proton from a polyunsaturated fatty acid. This process, by multiple stages leading to the formation of lipid hydroperoxides, is a known contributor to the development of atherosclerosis. (PMID: 17336279); Malondialdehyde is a highly reactive compound that is not typically observed in pure form. In the laboratory it can be generated in situ by hydrolysis of 1,1,3,3-tetramethoxypropane, which is commercially available. It is easily deprotonated to give the sodium salt of the enolate (m.p. 245 °C).; Malondialdehyde is the organic compound with the formula CH2(CHO)2. The structure of this species is more complex than this formula suggests. This reactive species occurs naturally and is a marker for oxidative stress.; Reactive oxygen species degrade polyunsaturated lipids, forming malondialdehyde. This compound is a reactive aldehyde and is one of the many reactive electrophile species that cause toxic stress in cells and form covalent protein adducts which are referred to as advanced lipoxidation end products (ALE), in analogy to advanced glycation end-products (AGE). The production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism.
CAS号
542-78-9
异构
O=CCC=O
InChI标识符
InChI=1S/C3H4O2/c4-2-1-3-5/h2-3H,1H2
WSMYVTOQOOLQHP-UHFFFAOYSA-N
平均分子量
72.021129372
id
8117
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,医药网对此不承担任何责任。
相关链接:医药研究数据| 医药资料| SDA药品评审中心| 中医网| 中药处方系统| 爱视立眼贴
专业提供药品信息、药品招商、药品代理、保健品招商、医药原料采购供应的中国药品信息网站平台
版权所有 © 2003-2028 盗冒必究  客服热线:0575-83552251 / 13754370441  QQ客服:药品信息客服
浙ICP备16010490号-2 增值电信业务经营许可证:浙B2-20220931 互联网药品信息服务资格证书编号:(浙)-经营性2023-0215 浙公网安备:330683240604819103159
 医药代理商群1:药药网药品采购交流医药代理商群2:药药网药品采购交流2医药代理商群3:药药网药品采购交流3